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Abstract. The infrared problem of the effective action in 2D is discussed in the framework of the covariant
perturbation theory. The divergences are regularized by a mass and the leading term is evaluated up to the
third order of perturbation theory. A summation scheme is proposed which isolates the divergences from the
finite part of the series and results in a single term. The latter turns out to be equivalent to the coupling to
a certain classical external field. This suggests renormalization by factorization.
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1 Introduction

In the last years two-dimensional models have widely been
used in the context of field quantization of and upon curved
spacetimes [1]. By choosing an appropriate “potential” for
the dilaton fields in the first order version of such gravity
models, essentially all physically interesting theories can
be covered, including interactions of gravity with matter,
at least as long as no explicit couplings of the matter (e.g.
scalar fields) to the scalar curvature are assumed. In par-
ticular, spherically reduced gravity (SRG) provides a sim-
ple model to study four-dimensional Hawking radiation
by a two-dimensional dilaton action with just one dilaton
field [2–4]. This is of special importance in connection with
the correct computation of the Hawking flux, which had
been the subject of some controversy [5, 6]. It has been set-
tled by one of the present authors with D.V. Vassilevich [3],
who showed that the correct flux at infinity, resulting in
the Stefan–Boltzmann law as determined by the Hawking
temperature, can be obtained. On the other hand, a loga-
rithmic divergence (cf. also [7, 8]) of the flux at the horizon
(in global coordinates) seems to remain a difficulty, at least
for the fixed background of an “eternal” black hole1.
The key problem has always been the computation of

the effective action, when the path integral of the quan-
tum field S (we only consider a single scalar field) is carried
out. In previous work cited above [3] this was treated by
the heat-kernel method, but at one point applied beyond
its mathematically established range of applicability.
Another quite different approach uses the covariant

perturbation theory (CPTH) of the functional determi-

a e-mail: hofmann@hep.itp.tuwien.ac.at
1 A recent attempt to also include the evaporation process in
a semi-classical manner can be found in [9, 10].

nant invented by Barvinsky and Vilkovisky [11–13]. We
have shown recently that even for massless scalar fields the
expected result [3] for the Hawking flux could be repro-
duced correctly using the CPTH in two dimensions [2]. The
drawback therein, however, has been the appearance of in-
frared (IR) divergences.
The IR problem in two dimensions has been a matter

of confusion since the invention of CPTH. The authors of
that method themselves claimed the non-analyticity and
thus non-applicability of their method in two dimensions,
except for one particular case (namely vanishing endomor-
phism; see below) in which the major result, the trace
anomaly, could be derived by the local Seeley–DeWitt
expansion as well [14, 15]. On the other hand, in other
work [16] the IR problem also has been declared as non-
existing2. Our viewpoint is that IR divergences exist to
all orders of CPTH, however, a procedure can be given to
regularize and eventually renormalize them by physical ar-
guments.
In the present paper a regularization procedure by

a mass termm2 for general effective actions in two dimen-
sions is proposed. We consider divergent terms lnm2 up to
the third order of CPTH and conjecture the possibility of
a summation of the series into a single term. Finally, we
show how such a term can be produced by an ambiguity
of a source term coupled to the scalar field S, representing
some external classical field.
In Sect. 2 we briefly recall the main features of CPTH

in two dimensions and quote some specifications when ap-
plied to SRG. The subsequent Sect. 3 is devoted to a formal

2 The origin of this surprising result, which seems to contra-
dict the analysis of Barvinsky and Vilkovisky, might be that
in their case orders in the (dimensionless!) dilaton instead of
orders in the curvature were considered.
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analysis of the divergences. Section 4 contains the results
of the mass regularization of the effective action up to the
third order of CPTH. A possible summation of the diver-
gences is conjectured. In Sect. 5 we discuss the significance
of the closed divergent expression obtained in Sect. 4 and
propose a renormalization by an external field.
The results are summarized in the Conclusions, where

related aspects and possible extensions are discussed as
well.
The Appendices contain details of the calculations on

which this work is based. Appendix A presents the mass
regularization for the second order of CPTH, Appendix B
for the third order. The meaning of formal terms of type
ln� is discussed in Appendix C.

2 Effective action in CPTH

The effective action W for a scalar field S on a curved
spacetime L with metric g is defined by

eiW =N

∫
D
(
4
√
−gS̃
)
e−

i
2

∫
L S̃OS̃

√
−gd2x , (1)

where the factor 4
√
−g in the path-integral measure has

been introduced to preserve general covariance [17], but
can be eliminated right away by redefining S := 4

√
−gS̃.

The classical scalar field S obeys the equation of motion
OS = 0 with general d’Alembertian

O =�+E . (2)

E (for endomorphism) refers to some potential coupled to
S which may contain one or several (dilaton) fields. It shall
not depend on S, excluding self-interaction. In SRG we
have only one dilaton field φ, defined by X = e−2φ, where
X may be gauged to simply represent the radius coordinate
r2 of the two-sphere in four dimensions. The corresponding
endomorphism, expressed by φ, reads [2]

E =�φ− (∇φ)2. (3)

After introduction of Euclidean time τ = it and an Eu-
clidean operator OE = −O =�+EE the effective action
(performing a Gaussian integration) can be written as the
derivative of the zeta function3 ζOE [s] := tr (O

−s) for the
parameter s:

W =
i

2
ln det(−OE)+const.

≈
i

2
tr ln(−OE) =−

i

2

d

ds
ζOE [s]

∣∣∣
s=0

(4)

The zeta function can be expressed by the heat-kernel
eOEτ :

ζOE [s] =
1

Γ (s)

∫ ∞
0

τs−1tr
(
eOEτ

)
dτ . (5)

3 For simplicity we shall write very often the Minkowski sig-
nature operator O in connection with the zeta function and the
heat-kernel where there should be −OE .

The trace of the heat-kernel in CPTH [11] is expanded in
orders of curvature4

tr
(
eOEτ

)
=
1

4πτ

∫
E

{
a0+ τa1+ τ

2a2+ . . .

}
√
gd2xE ,

(6)

where the zeroth and first order coefficients are local and
agree with those of the Seeley–DeWitt expansion [18],
namely

a0 = 1 ,

a1 =
RE

6
+EE . (7)

All other coefficients are non-local, i.e. they contain inte-
grations over the Green function on the Euclidean space-
time LE , expressed by inverse powers of � (Green func-
tions) and the presence of form factors like f (cf. [2], (18)):

a2 =RE

[
1

16τ� +
f(τ�)
32

+
f(τ�)−1
8τ� +

3[f(τ�)−1]
8(τ�)2

]

×RE +EE

[
f(τ�)
6
+
f(τ�)−1
2τ�

]
RE

+RE
f(τ�)
12
EE +EE

f(τ�)
2
EE , (8)

f(x) =

∫ 1
0

e−a(1−a)xda . (9)

A series expansion of the effective action in orders of curva-
ture thus reads

W =−
i

2

d

ds

{
1

Γ (s)

∫ ∞
0

dτ

4πτ2−s

×

∫
E

{
a0+ τa1+ τ

2a2+ . . .

}
√
gd2xE

} ∣∣∣∣
s=0

.

(10)

The key feature of CPTH within the context of 2D dilaton
gravity is that the effective actionW is computed directly
from (10) (well-defined in the Boulware state [2]), and not
only certain functional derivatives thereof in the conformal
gauge, which are integrated later on [3]. It is the (infinite)
τ -integral of (10) that makes the IR divergence explicit
which in the previous approach [3, 6] was not evident.
In order to be self-contained we quote the result of [2]

for the finite part (up to finite renormalization effects from
the UV/IR divergences involving renormalization con-
stants ci) ofW to second order of CPTH (with Minkowski
signature):

Wfinite =
1

96π

∫
M

[
(R+12E)

1

�R
]
√
−gd2x , (11)

which for SRG, (3), reproduces the correct asymptotic
Hawking flux of [3].

4 In this context “curvature” means the scalar curvature R,
the endomorphism E as well as some gauge curvature (which in
the present case is absent).
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3 Divergences

In this section we recall all divergences in W produced by
CPTH in two dimensions, including the UV divergence(s)
of the lower order(s). Generally one can say that a diver-
gence at the lower limit of the τ -integration corresponds to
a UV divergence, while the upper limit may cause IR di-
vergences. In earlier work [2] we used a cut-off T at large τ
to control the IR behavior of the heat-kernel. Here we in-
troduce a mass term instead, the advantage with respect to
a cut-off in τ being a clear separation between UV and IR
divergences.

3.1 UV divergences

From (10) we observe that the zeroth order of CPTH, pro-
portional to a0, has a pole of first order at τ = 0. In [12]
this UV divergence had been dismissed summarily by di-
mensional regularization arguments (see (3.17) in [12]). In
fact, a constant divergence∝ 1/ε, where ε > 0 is a cut-off at
τ = 0, can be interpreted as the infinite contribution of the
vacuum energy to the cosmological constant:

WUV =W0 =
1

8π

∫
M

1

ε

√
−gd2x . (12)

Its infinite contribution to the Hawking flux in SRG
could be renormalized by substracting the flat spacetime
value [2].
Apart from the one related to a0 there are no further

UV divergences in two dimensions.

3.2 IR divergences

Starting with the first one all orders in CPTH produce IR
divergences. It is obvious that the divergence of the first
order is logarithmic and simply proportional to a1. The
higher order coefficients include exponential form factors
like e.g. (9), leading to logarithmic divergences as well.
It should be noted that for the particular case of E = 0

(providing conformal invariance of the two-dimensional ac-
tion), the effective action becomes IR finite even in two
dimensions [19]!
The effective action shows a well-known ambiguity due

to translation invariance of the path integral which can be
expressed in the form

W =−
i

2

d

ds
ζOE [s]

∣∣∣
s=0
−
i

2
ζOE [0] ln µ̃

2. (13)

Its origin is the possibility5 to re-define O by a multi-
plication with µ̃−2. This can be shifted into the scalar
field S and simply leads to a multiplication of all posi-
tive eigenvalues of the elliptic operator −OE by this factor
and thus to a contribution to the effective action because

5 We emphasize already here that this possibility disappears
in the presence of some external source (cf. the last paragraph
of Sect. 5).

ζ[s] = tr(λ−s)→ tr[(λ/µ̃2)−s] [1]. In the present case we
have ζOE [0] =

1
4π

∫
LE
a1
√
gd2xE and hence by (7) an ambi-

guity

Wamb =−
1

96π

∫
M

[
(2R+12E) ln µ̃2

]√
−gd2x . (14)

Therefore, at first sight the IR divergence (17) of the first
order CPTH could be renormalized by simply adjusting
the constant µ̃2. However, the latter could be related to
the UV renormalization in higher-dimensional theories (as
usual in two dimensions UV and IR divergences may com-
bine). Anyway, an ambiguity of the type (14) is not suffi-
cient to renormalize all orders of CPTH.

4 IR regularization

We regularize the effective action by introducing a mass
term in the d’Alembertian: O→O+m2. This mass term
can be pulled out from the trace of the heat-kernel

tr
(
e−[O+m

2]τ
)
= e−m

2τ tr
(
eOEτ

)
, (15)

and thus regularizes the zeta function (5) at the upper limit
of τ .
The leading power in the radius r which determines

the asymptotic flux for SRG from (11) from the second
order in CPTH has been found to be independent of the
IR problem. In order to try to understand this we thus
have to go beyond that. In the following we compute the
IR divergences up to the third order of CPTH. The final
expressions are presented in Minkowski signature space-
time. Thereby we pick up a factor i from the Euclidean
volume element d2xE = i ·d2x which is multiplied by the
factor −i in (10) resulting in no overall sign change. The
Euclidean expressions in the zeta function ζ[s] like metrics,
scalar curvature etc. produce a minus sign when switching
to Minkowski signature spacetime.

4.1 First order of CPTH

In the first order term ∝ a1 a simple substitution of the
integration variable τ →m2τ is sufficient

d

ds

{
1

Γ (s)

∫ ∞
0

τs−1e−m
2τdτ

}
=
d

ds

{
(m2)−s

}

=−(m2)−s lnm2 ,

(16)

yielding at s→ 0 the expected lnm2 behavior. Going back
to Minkowski signature spacetime the resulting contribu-
tionW1 to the effective action reads

W1 =
1

96π

∫
M

[
(2R+12E) lnm2

]√
−gd2x . (17)

Replacing all Euclidean by Minkowski signature variables
the curvatures acquire a minus sign by this transition:
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R=−RE , E =−EE . Therefore, the choice µ2 =m2 in (14)
would be sufficient to formally renormalize the first order
divergence to zero. However, this would contribute to the
inherent mixing of UV and IR renormalization alluded to
already above which we want to avoid.
Of course, R

√
−g is a total divergence in two dimen-

sions and we therefore may omit its contribution to the
effective action.

4.2 Second order of CPTH

The second order (8) of CPTH consists of non-local terms
only that are produced by the form factor f , (9). As an-
nounced we write � instead of −� for simplicity, although
we should still treat quantities to be Euclidean at inter-
mediate steps. There are five types of heat-kernel integrals
contributing to the second order in (8), the most non-
trivial one being (see Appendix A, (A.6), (A.8))

If =
d

ds

{
1

Γ (s)

∫ ∞
0

τsf(τ�)e−m2τdτ
} ∣∣∣∣
s=0

=
1

m2
F

( �
m2

)

=
z ·F (z)

� =
2

�
Arcosh

(
z
2 +1

)
√
1+ 4z

, (18)

where z = �/m2. F (z) is a regular function for all z ∈
[0,∞[ and possesses a series expansion around z = 0. This
allows for an expansion of F (�/m2) in terms of a complete
set of eigenfunctions6 ϕλ(y) of � which proves useful when
examining the action of (18) on some function, say E as
in (8):

IfE =
z ·F (z)

�

∫ ∞
0

δ(y−y′)E(y′)dy′

=
1

�

∫ ∞
0

dλ

( �
m2

)
cdotF

( �
m2

)
ϕλ(y)

×

∫ ∞
0

ϕλ(y
′) ·E(y′)dy′

=
4M2

�

∫ ∞
0

dλ

2Arcosh

(
λ2

4M2m2
+2

2

)

√
1+ 16M

2m2

λ2

ϕλ(y)

×

∫ ∞
0

ϕλ(y
′) ·E(y′)dy′ (19)

Here and in the following it is convenient to keep �−1
outside the λ-integral. This seems natural since all (IR
regular) second order terms contain one Green function,
making them non-local. Its action on the whole expression
should be determined by different means, e.g. by letting it
act to the left (cf. (6) with (8)).

6 For SRG the dimensionless variable y = r
2M −1 is related to

the radius measured from the horizon 2M , λ ≥ 0 is a properly
defined dimensionless eigenvalue (cf. Appendix C).

In a next step we take the limitm→ 0 at fixed, finite λ:

λ

m2
F

(
λ

m2

)
m→0
→ −2 ln

(
m2

λ

)
+O(m2) . (20)

Whether this really spearates the IR divergence ∝ lnm2

clearly depends on the behavior of the integrand in (19)
at λ→ 0 for which the dependence on λ of the eigen-
functions is crucial. Another way to check the justification
of this separation for all values of λ consists in assum-
ing (20) and to verify that the finite remnant, essentially
given by �−1

∫∞
0
dλ ln λ ·ϕλ(y)

∫
y
ϕλ(y

′)E(y′)dy′, is well-

defined. An analysis (Appendix C) of the eigenfunctions
and of the double integral in (19) suggests that the latter
converges for all values of y and in the case of SRG falls
off asymptotically at least as y−1. Therefore, the limit (20)
can be justified indeed in (18) even including λ→ 0, yield-
ing the formal limit:

If
m→0
→ −2

ln
(
m2

�

)

� +O(m2) (21)

In [2] we already showed that only the last term in (8),
which is of the type EE If EE , leads to the IR divergence
of the second order CPTH. Although If also appears in
other terms in (8) which are of the type R2E , RE ·EE those
contributions cancel. In comparison with the cut-off reg-
ularization τ ≤ T of [2] the result (21) is shifted by some
finite constant lnm2 =− lnT −γE where γE ≈ 0.57721 is
the Euler constant. To check whether the regular part of
the second order CPTH remains unchanged, also the inte-
gral (see Appendix A, (A.9))

If−1 =
d

ds

{
1

Γ (s)

×

∫ ∞
0

τs−1
∫ 1
0
e−a(1−a)�τda−1

� e−m
2τdτ

} ∣∣∣∣
s=0

=−
z ·G(z)

� (22)

is needed. Again the formal limitm→ 0 is justified:

If−1
m→0
→
ln
(
m2

�

)
+2

� +O(m2) (23)

Comparing with τ regularization in [2], (22) is shifted by
the same amount as in (21), and therefore (one piece7 of)
the regular part is in perfect agreement with [2] the terms
∝EE ·RE in (8):

d

ds

{
1

Γ (s)

∫ ∞
0

τs−1dτ

}
EE

[
f(τ�)
4
+
f(τ�)−1
2τ�

]
RE

=EE
1

�RE . (24)

7 There is another regular non-local contribution∝R2E to this
order of CPTH [12] (the first line in (8)) which is not considered
here.
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This proves the concordance of the mass regularization
with the cut-off one in the regular sector, yielding the IR
divergent contribution

W2 =
1

96π

∫
M

⎡
⎣−12 ·E ln

(
m2

�

)

� E

⎤
⎦√−gd2x (25)

to the effective action.

4.3 Third order of CPTH and summation

To third order of CPTH technical complications increase
dramatically. Therefore, we make the assumption that the
IR divergence is contained in the “pure” endomorphism
term which is ∝E3. This is supported by the fact that

– the IR divergences were “purely endomorphism” to the
first two orders;
– the effective action becomes IR finite in the case E =
0 [19].

In Appendix B we show that (under this assumption) the
unique, logarithmically divergent part of the endomor-
phism term is given by

W3 =
1

96π

∫
M

[
12 · lnm2 ·E

1

�E
1

�E
]
√
−gd2x . (26)

Here we have disregarded terms formally written as ln� as
we aremainly interested in the IR structure. The proper in-
terpretation of such terms, being IR regular, is discussed in
Appendix C.
Inspection of the IR divergent terms (17), (25), and (26)

reveals a nice pattern, suggesting a similar structure for the
higher order ones in an infinite series, which even lends it-
self to a formal summation. It proves useful to introduce
some renormalization parameter µ2 by replacing lnm2 =
ln(m2/µ2)− lnµ2 and ln(m2/�) = ln(m2/µ2)− ln(µ2/�),
respectively. Adding (17), (25), and (26) the IR divergence
of the effective action (up to the third order of CPTH) can
be given in the form

WIR =
1

8π

∫
M

[(
E−E

1

�E+E
1

�E
1

�E
)
ln
m2

µ2

]

×
√
−gd2x . (27)

It is striking that these terms can be reproduced by the
formal series expansion

� 1
O
E =� 1

�+E E =�
1

1+ 1
�E

1

�E

=�
(
1−
1

�E+
1

�E
1

�E+ . . .
)
1

�E

=E−E
1

�E+E
1

�E
1

�E+ . . . . (28)

This suggests that the total IR divergence of the effective
action can be represented formally as

WIR =−
1

8π

∫
M

{
� 1
O
E

}
· ln ξ

√
−gd2x , (29)

where ξ = µ2/m2 → +∞ in the limit m2 → 0. Expres-
sion (29) indeed produces divergent contributions to ex-
pectation values as for instance the “dilaton anomaly” in
SRG [3]:

〈
T θθ
〉
2
∝
δWIR

δφ
=

∫
M

δWIR

δE

δE

δφ

√
−gd2x

=
1

8π

∫
M

δE

δφ

ln ξ

(1+ρ)2
√
−gd2x . (30)

Here we have used the SRG conformal gauge8 representa-
tion E = 2M/r3 =�ρ (implying φ=− ln r in (3) [2]. How-
ever, as it should be, the IR divergence (29) does not con-
tribute to the trace anomaly9.
Of course, a mathematically stringent discussion of the

convergence for the series expansion (28) is impossible.
Nevertheless, we add here some heuristic argument. A ne-
cessary formal condition is |�−1E|< 1. In the case of SRG
we have �−1E = ρ = ln

(
1− 2M

r

)
/2, and therefore this

condition is fulfilled for r > 1.156 · rh where rh = 2M is the
radius of the event horizon. Thus the series may converge
a short distance outside the horizon, excluding thereby,
however, the most interesting region. On the other hand, it
could be speculated that the logarithmic divergence at the
horizon [6–8] when the leading flux term is extrapolated
back may be related to (or even compensated by) a diver-
gence of the series (28).

5 Renormalization

We have shown that the formal expression (29) correctly
reproduces the IR divergences of the CPTH up to the sec-
ond order and at least partly to the third order. The next
task is whether one can find physically reasonable coun-
terterms in order to eliminate (29).
To this account we introduce a source term jS beside

the scalar action in the path integral (1):

L[g, S] =

∫
M

[
jS−

1

2
SOS

]
√
−gd2x

:=−
1

2

∫
M

[
ŜOŜ+ jO−1j

]√
−gd2x . (31)

The current j has been shifted into the re-defined scalar
field Ŝ by translation invariance of the path integral. Now,
by rewriting the inverse operator as
O−1 =�−1�O−1��−1, where �O−1� can be expanded

8 Conformal gauge is defined by gαβ = e
2ρηαβ generally and

ρ= ln
(
1− 2Mr

)
/2 in the particular case of SRG. The implicit

dependance on the tortoise coordinate r(r∗) is not relevant
here.
9 In this context note that the representation E =�ρ of the
endomorphism can be used only after variation of the effective
action (before that we must use (3)). Therefore, (29) does not
contain the conformal factor ρ explicitly and hence is confor-
mally invariant.
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in a series similar to (28), one obtains for the source term
Wj of the effective action

Wj [g, j] =−
1

2

∫
M
j
1

�

(
� 1
O
�
)
1

�j
√
−gd2x

=−
1

2

∫
x

∫
y

∫
z

j(x)G(x, y)

×

(
�−E+E 1�E− . . .

)
y

G(y, z)j(z)

=−
1

2

∫
M
j
1

�j
√
−gd2x

+
1

2

∫
x

∫
y

∫
z

(
E−E

1

�E+ . . .
)
y

×G(y, x)j(x)G(y, z)j(z)

=−
1

2

∫
M
j
1

�j
√
−gd2x

+
1

2

∫
M

(
E−E

1

�E+ . . .
)(
1

�j
)(
1

�j
)

×
√
−gd2y . (32)

For clarity in the intermediate step of (32) we wrote the
Green function G(x, y), as defined by �G(x, y) =−δ2(x−
y), instead of−�−1. We furthermore assumed it to be sym-
metric in its arguments10. We now re-define the source j by
adding a term −�χ0. Then, up to terms that vanish in the
limit j→ 0, a contribution quadratic in χ0 survives:

Wj [g, j] =
1

2

∫
M

[(
E−E

1

�E+ . . .
)
χ20−χ0�χ0

]

×
√
−gd2x+O(j) , (33)

where the terms in the brackets are precisely of the
form (28) of the IR divergence (29). Thus the latter can be
removed to all orders of CPTH by the choice

χ20 :=
ln ξ

4π
=
ln
(
µ2

m2

)

4π
> 0 . (34)

We emphasize that even the sign is consistent as χ20 clearly
must be positive. For such a zero-mode χ0 the additional
term ∝ χ0�χ0 in (33) vanishes.
As for constant χ0 we have trivially �χ0 = 0, at first

sight our procedure seems to be very strange. Indeed, re-
considering the classical action (31) with source term jS
before redefining the scalar field S, a shift in the source
j → j−�χ0 leaves it invariant if χ0 is a constant (or
a zero-mode). However, this shift affects the effective ac-
tion containing combinations �−1j, i.e. a non-local effect
occurs. Therefore, the contribution (33) to the effective ac-
tion must be considered some quantum ambiguity similar

10 This restricts our argument to the Feynman Green func-
tion which, anyway, is naturally preferred due to the Euclidean
analysis in the derivation of the effective action. Here we dif-
fer from Barvinsky and Vilkovisky who argue that the retarded
Green function should be inserted “by hand” [11]. In the con-
text of SRG this step could not be confirmed [2].

to the well-known one described in (13) and (14) above.
There we saw that the latter could be used to renormal-
ize (17), the first order of CPTH, only. In this respect the
present ambiguity appears to be an extension of that to all
orders of CPTH, whereby the origin again could be found
in the translation invariance of the path integral. It is,
however, powerful enough to remove all IR divergences of
the theory (assuming that our conjecture upon the higher
order terms is valid). Thereby it introduces the renormal-
ization constant µ2 into the remaining finite part of the
effective action which should be determined by the value of
the Hawking flux.
A crucial difference between the former (14) and the

new ambiguity (33) is the relation to a source term in the
case of the latter. In the presence of this source term the
former “symmetry” of the path integral under multipli-
cation of O by some renormalization constant, which led
to the original ambiguity (14), is destroyed. Therefore it
seems that one has to choose between two kinds of am-
biguities, whereby only the one exhibited here allows for
a complete IR renormalization to all orders of CPTHwhich
works by factorising out the IR terms.

6 Conclusions

The aim of this paper was to shed new light on the in-
frared problem inherent in general scalar effective actions
in two dimensions. To establish the effective action we used
the covariant perturbation theory of Barvinsky and Vilko-
visky [11], based upon an expansion in orders of the curva-
ture. Curvature in this context not only refers to the scalar
curvature R associated with the d’Alembertian � but also
to some potential E called endomorphism “acting” on the
scalar field S and thus forming a general d’Alembertian
O =�+E.
We further added a mass term to control the infrared

divergences of the effective action (15). The calculation
of these divergences has been performed in detail for the
second and, with simplifying assumptions, also to third
order of covariant perturbation theory. In comparison with
a previous approach [2] (where a cut-off of the eigentime
τ in the heat-kernel formalism was used as a regulator)
the results for the integrals were the same up to a fi-
nite constant. The latter is irrelevant as it does not en-
ter the regular part of the effective action (24). The key
problem has been the separation of the infrared diver-
gences proportional to lnm2 which, starting with the sec-
ond order of covariant perturbation theory, are coupled
to formal terms ln�. Going back to the origin of the lat-
ter and using an expansion in terms of eigenfunctions of
(the radial part of) the d’Alembertian we could show that
the separation of the IR divergences produced finite rem-
nants of the same type, including some renormalization
constant µ2.
The infrared divergences of the first three orders of

covariant perturbation theory were shown to fit into the
pattern of a formal series (28) that could be summed into
a single term (29), containing the inverse of the general
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d’Alembertian O. At this point we conjectured the exten-
sion of this identity to higher orders.
The introduction of a source term jS (31) in the path

integral revealed the existence of an ambiguity (33) of the
effective action due to its non-locality. A shift in the source
j→ j−�χ0 leaves the classical action invariant but pro-
duces non-vanishing contributions to the effective action
if χ0 is a zero-mode of the d’Alembertian. The resulting
contribution exhibits the same structure as the infrared di-
vergence (29) but carries the opposite sign and thus proves
a good candidate for renormalization. Indeed, by a choice

χ20 = ln ξ/4π where ξ = µ
2/m2 > 0, the total infrared diver-

gence of the effective action can be renormalized, thereby
leaving finite terms containing some constant µ2. The lat-
ter appear in new types of terms in the effective action
which had not been considered previously (∝ ln�/µ2), and
should be fixed by physical observables like the Hawking
flux in the case of spherically reduced gravity.
A particular feature of these renormalization terms is

that they are not conformally invariant and thus lead to
contributions to the trace anomaly. A heuristic argument
suggests that they contribute significantly only in the re-
gion where the convergence of the series (28) breaks down
(i.e. close to the horizon). There they may even lead to
a logarithmic divergence, similar to the one found in the
“dilaton anomaly” [3]. This behavior might hint at an
analogous problem of convergence in the regular sector
of the covariant perturbation theory, which, however, is
more difficult to investigate since the coefficients show no
comparable, simple pattern. On the other hand it might
even be that the logarithmic divergences produced by the
renormalization terms compensate the one of the dilaton
anomaly.
For vanishing endomorphism E the infrared diver-

gence (29) becomes a trivial surface term and hence van-
ishes. This is in agreement with the observation that the
effective action should be finite in two dimensions in this
particular case [19].
It is a peculiarity of our approach that the shift in

the source j produces a term linear in j and thus a non-
vanishing expectation value 〈S〉. By construction it is a so-
lution of the d’Alembertian O because O 〈S〉 = �χ0 = 0
and approaches asymptotically the zero-mode 〈S〉

r→∞
→ χ0.

The present calculations clearly cannot prove the as-
sumptions made about the summation of the IR diver-
gences to all orders as they are based upon arguments only
involving terms up to the third order. However, the cancel-
lation of divergences up to the second and (at least partly)
to the third order by means of our approach is manifest
and thus strongly supports the results on the Hawking flux
obtained by this method [2].
We found that the IR divergent terms, as well as

their compensation, can be collected in a factor. Such
factorizations of IR terms in the limit of small masses
are a phenomenon which is known for a long time in
connection with the emission of soft photons [20, 21]. It
is amusing that a similar phenomenon seems to occur
here, and this may suggest an analogous renormalization
prescription.
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Appendix A: Heat-kernel integrals to the
second order of CPTH – mass
term regularization

The exponential function in f(τ�) in (18) (which in the
following we call If ) can be expanded formally in a series:

If =
∞∑
n=0

(−1)n
cn

n!
�n d
ds

{
1

Γ (s)

∫ ∞
0

τs+ne−m
2τdτ

} ∣∣∣∣
s=0

,

(A.1)

where cn =
∫ 1
0 [a(1−a)]

nda= (1/4)n
∫ 1
0 (1−u

2)ndu. In the
integral

Cn(k) :=

∫ k
0

(k2−u2)ndu= k2n+1Cn(1) (A.2)

differentiation by k gives

dCn(k)

dk
=

∫ k
0

n(k2−u2)n−12k du,= (2n+1)k2nCn(1) ,

(A.3)

and for k = 1 we have the recursion formula

(2n+1)Cn(1) = 2n ·Cn−1(1) . (A.4)

Since cn = (1/4)
nCn(1) this becomes a similar relation for

the cn:

cn+1 =
n+1

4n+6
· cn (A.5)

Using
∫∞
0 e

−m2ττs+ndτ = Γ (s+n+1)

m2(s+n+1)
we can perform the τ -

integration of If :

If =
1

m2

∞∑
n=0

(−1)ncnz
n :=

z ·F (z)

� , (A.6)

where we have defined the function F (z) and z :=�/m2. In
order to obtain a closed expression for F the recursion rela-
tion (A.5) can be used to establish a differential equation

F ′(4z+ z2)+F (2+ z) = 2 (A.7)

with general solution

F (z) =
2Arcosh

(
z+2
2

)
√
4z+ z2

+
c

√
4z+ z2

(A.8)

depending on an integration constant c. If vanishes for
m→∞ or z→ 0, which entails c= 0, producing (18).
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Performing exactly the same steps as before we can cal-
culate the heat-kernel integral If−1 of (22) with the func-
tion

G(z) =
∞∑
n=0

(−1)nbnz
n , bn =

n

2(2n+3)
bn−1 . (A.9)

Appendix B: Third order of CPTH

To calculate the IR divergent term of orderE3 in CPTHwe
start from (see (2.28) in [11])11

d

ds

{
1

Γ (s)

∫ ∞
0

τs−1dτ
τ3

3τ1

∫ 1
0

dα

∫ α
0

dβ

×

∫
LE

√
gd2xe−τ [β(α−β)�1+β(1−α)�2+(α−β)(1−α)�3+m

2]

×E1E2E3

} ∣∣∣∣
s=0

=
d

ds

{∫
α

∫
β

∫
LE

[
β(α−β)�1+β(1−α)�2 .

+(α−β)(1−α)�3+m2
]−s−2

× ·
E1E2E3

3
· s(s+1)

} ∣∣∣∣
s=0

. (B.1)

The β-integration is done first, using the formula
∫
1

Xn
dx=

2ax+ b

(n−1)∆Xn−1
+
(2n−3)2a

(n−1)∆

∫
dx

Xn−1
,

(B.2)

where we have a = −�1, b = α�1+(1−α)[�2−�3], c =
α(1−α)�3+m2 and ∆ = −α2�21− (1−α)2[�2−�3]2−
2α(1−α)�1[�2−�3]−4m2�1.m2 can be set to zero in∆,
because it leaves the whole expression regular. This can be
checked by inserting α= 0, 1. The β-integration yields
∫ α
0

Y −s−2dβ =
−2�1β+α�1+(1−α)[�2−�3]

(s+1)∆ ·Y s+1

∣∣∣∣
α

0

−
(2s+1)2�1
(s+1)∆

∫ α
0

Y −s−1dβ , (B.3)

where Y = β(α−β)�1+β(1−α)�2+(α−β)(1−α)�3+
m2. Only the surface term retains the IR divergence while
the remaining integral will become regular after the α-
integration. The upper limit contribution β = α is

−α�1+(1−α)[�2−�3]
(s+1)∆[α(1−α)�2+m2]s+1

, (B.4)

while the lower limit β = 0 gives

−
α�1+(1−α)[�2−�3]

(s+1)∆[α(1−α)�3+m2]s+1
, (B.5)

11 A d’Alembertian with index is supposed to act only on func-
tions with the same index, i.e. �1E1 := limx1→x�x1E(x1).

these contributions being symmetric under the exchange
2↔ 3. Next we perform the α-integration for the upper
limit contribution, partially integrating the IR divergent
expression [α(1−α)�2+m2]−s−1. The remaining term,
being differentiated, cannot lead to further IR divergences
because ∆−1 is finite on the whole α-interval. For the par-
tial α-integration we have a=−�2, b=�2, c=m2, ∆α =
−�22+O(m2) andX = α(1−α)�2+m2. We have
∫ 1
0

−α�1+(1−α)[�2−�3]
(s+1)∆

[
α(1−α)�2+m2

]−s−1
dα

=

{
−α�1+(1−α)[�2−�3]

(s+1)∆

×

[
−2�2α+�2
−s�22

X−s+
−(2s−1)2�2
−s�22

∫
X−sdα

]}1
0

−

∫ 1
0

[
−2�2α+�2
−s�22

X−s+
−(2s−1)2�2
−s�22

∫
X−sdα

]

×∂α
−α�1+(1−α)[�2−�3]

(s+1)∆
dα (B.6)

All terms contain a factor [s(s+1)]−1 which is cancelled by
an identical one in (B.1). The differentiation for s thus only
acts on factors 2s−1 in the numerators, leaving such ex-
pressions harmless, and on X−s, thereby producing a log-
arithm of the argument. If the latter is evaluated directly
on the boundary we arrive at a logarithmic divergence. The
remaining integral is regular. Hence, the logarithmic di-
vergence only appears in the first term of the second line
in (B.6). We first evaluate it at the boundary:

(
−α�1+(1−α)[�2−�3]

(s+1)∆

)(
−2�2α+�2
−s�22

)

×
[
α(1−α)�2+m2

]−s ∣∣∣∣
1

0

=

[
1

�1�2
+

1

(�3−�2)�2

]
(m2)−s

s(s+1)
(B.7)

By the symmetry 2↔ 3 the lower limit of the β-integration
yields an IR divergent term

[
1

�1�3
+

1

(�2−�3)�3

]
(m2)−s

s(s+1)
(B.8)

after the α-integration has been performed. Finally we put
these terms into (B.1) and obtain the unique IR divergent
contribution of the order E3:

d

ds

{
(m2)−s

∫
LE

√
gd2x

(
1

�1�2
+

1

�1�3
+

1

�2�3

)

×
E1E2E3

3

∣∣∣∣
{1,2,3}=1

}

s→0
→ − lnm2

∫
LE

E
1

�E
1

�E
√
gd2x . (B.9)
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Appendix C: Regularity of ln�

The regularity of the formal expression ln� in (21) must be
discussed for the combination (ln�/�)E which appears in
the CPTH to second and higher order. An explicit expres-
sion can be found by inserting eigenfunctions ϕλ(y) of the
d’Alembertian. Since the action of ln� on the eigenfunc-
tions is not yet defined, we must go back to the function
F (z) (see (A.6), Appendix A) which produces the term
∝ (ln�/�)E in the limit m→ 0. Expanding z ·F (z) in
a power series in z =�/m2 its action on the eigenfunctions
is well-defined and yields (19).
Eigenfunctions and eigenvalues are defined as�ϕλ(y) =

λ̃2 ϕλ(y) = λ
2/(4M2) ϕλ(y) where λ is dimensionless (see

below). We have assumed that E is time-independent as it
is the case for SRG. In a next step we would like to per-
form the limitm2→ 0 in the integrand of (19) to isolate the
IR divergence ∝ lnm2. Such a result, however, critically
depends on the regularity of the λ-integration, in particu-
lar on the behavior of the eigenfunctions ϕλ(y) in the limit
λ→ 0.

C.1 Eigenfunctions

The eigenvalue equation of the radial d’Alembertian

�rϕλ(r) =−
d

dr

[(
1−
2M

r

)
d

dr

]
ϕλ(r) = λ̃

2 ·ϕλ(r)

(C.1)

with the dimensionless radius variable y := r
2M −1 can be

brought to the dimensionless form

−
d

dy

(
y

1+y

d

dy

)
ϕλ(y) = λ

2 ·ϕλ(y) (C.2)

with the dimensionless eigenvalue λ2 := 4M2λ̃2. The differ-
ential equation (C.2) possesses two inessential singularities
at y = −1 and y = 0, but an essential one at y→∞. Its
solutions, therefore, do not belong to Fuchs’ class. At the
horizon (y = 0) (C.2) has two independent solutions, one
of which is logarithmically divergent for y→ 0. They can
be determined by standard methods as generalized power
series:

ϕ
(1)
λ = 1−λ2y+

λ2(λ2−2)

4
y2−

λ4(λ2−8)

36
y3+O

(
y4
)
,

(C.3)

ϕ
(2)
λ = ϕ

(1)
λ · ln y+(2λ

2+2)y−
λ2(3λ2−2)

4
y2+O

(
y3
)
.

(C.4)

Expanding the whole equation (rather than the solution)
for small values of y the approximative equation ϕ′λ+
λ2ϕλ = 0 has the unique solution

ϕhλ(y)
y→0
≈ c(λ) · e−λ

2y = c(λ) · e−λ
2( r2M −1) , (C.5)

which is regular at the horizon and approaches there
the regular one ϕ

(1)
λ of the two solutions of the exact

eigenvalue- equation (C.2). c(λ) is an unknown normaliza-
tion factor. For large y the solutions

ϕ∞λ (y)
y→∞
≈ a(λ) sin(λy)+ b(λ) cos(λy) (C.6)

correspond to the expected free wave at asymptotic dis-
tances. In principle the normalization factors c(λ), a(λ),
and b(λ) can be fixed by the orthonormality condition

∫ ∞
0

ϕλ′ϕλdy =
1

∆λ2
y

1+y
[ϕλ′ (ϕ

′
λ)− (ϕ

′
λ′)ϕλ]

∣∣∣∣
∞

0

:= δ(∆λ) , (C.7)

following from (C.2), where∆λ= λ′−λ and∆λ2 = (λ′)2−
λ2. Because of the pre-factor y/(1+ y) only the upper

boundary contributes where ϕ
(1)
λ , the regular solution, be-

haves as (C.6). It is convenient to compare (C.7) to the or-
thogonality condition of the exactly known eigenfunctions
ϕ0λ = a(λ) sin(λy)+ b(λ) cos(λy) of the flat radial d’Alem-

bertian �0 =− d
2

dy2
:

∫ ∞
0

ϕ0λ′ϕ
0
λdy =

1

∆λ2

[
ϕ0λ′

(
d

dy
ϕ0λ

)
−

(
d

dy
ϕ0λ′

)
ϕ0λ

] ∣∣∣∣
∞

0

=
π

2
[a2(λ)+ b2(λ)]δ(∆λ)+

λ′a(λ′)b(λ)−λa(λ)b(λ′)

∆λ2
.

(C.8)

The appearance of the last term in (C.8) expresses the fact
that the flat eigenfunctions ϕ0λ are not orthogonal on the
half-line. More precisely, the sin(λy)-modes are not orth-
ogonal to the cos(λy)-modes12.
The upper limit contributions of (C.7) and (C.8) are

identical. The lower limit y = 0 in (C.6) vanishes for ϕλ.
Thus we can write∫ ∞

0

ϕλ′ϕλdy =

∫ ∞
0

ϕ0λ′ϕ
0
λdy+

1

∆λ2

×
[
ϕ0λ′
(
∂yϕ

0
λ

)
−
(
∂yϕ

0
λ′

)
ϕ0λ
] ∣∣∣∣
0

=
π

2
[a2(λ)+ b2(λ)]δ(∆λ) . (C.9)

The lower limit contribution (which can be calculated di-
rectly inserting the flat eigenfunctions ϕ0λ) just happens to
cancel the inconvenient last term in (C.8). Therefore, the
exact eigenfunctions ϕλ of the curved d’Alembertian are
orthogonal on the half-line13 y ∈ [0,∞[. According to (C.9)
the normalization is fixed by a choice

12 For instance, the term a(λ′)b(λ)
∫∞
0 sin(λ

′y) sin(λy)dy has
been calculated by differentiating the identity∫∞
0 sin y cos(a y)/ydy = π/4[1− sgn(a−1)] for a. For the term

a(λ′)b(λ)
∫∞
0 sin(λ

′y) cos(λy)dy, spoiling the orthogonality, we
differentiate

∫∞
0 [cos(ay)− cos(by)]/ydy = ln b/a by a and set

a= λ−λ′, b= λ+λ′.
13 A general Sturm–Liouville operator of the type
− ddy (g(y)

d
dy ) shares this property, if the function g(y) satisfies

g(∞) = 1 and g(0) = 0 as in our case (C.2).
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a(λ) =

√
2

π
· â , b(λ) =

√
2

π
· b̂ (C.10)

for the factors of the large y solutions (C.6), where â2+
b̂2 = 1. The normalization c(λ) of the unique exponential
solution (C.5) at small values of y, however, is still un-
known. As the differential equation (C.2) does not belong
to Fuchs’ class, the relation between solutions at different
singularities is not known. Instead we try to find an an-
swer by an approximate patching of the solutions at some
intermediate value ȳ. Considering (C.2) it is evident that
the solutions ϕhλ, ϕ

∞
λ are accurate for y 1 , y� 1, re-

spectively. Therefore, the choice ȳ = 1 seems appropriate
for the patching. We assume that at this point the regular
solution (C.5) and its derivative with c(λ) =

√
2/π ĉ shall

approach a linear combination of the two large y solutions:

ĉ · e−λ
2
≈

[
â sin(λ)+ b̂ cos(λ)

]
(C.11)

−λ2 ĉ · e−λ
2
≈ λ

[
â cos(λ)− b̂ sin(λ)

]
(C.12)

The normalizations are fixed by the limit λ→ 0, leading to
the equations:

ĉ
[
1−λ2+O

(
λ4
)]
≈ â

[
λ−
λ3

6
+O
(
λ5
)]

+ b̂

[
1−
λ2

2
+O
(
λ4
)]
,

(C.13)

ĉ
[
1−λ2+O

(
λ4
)]
≈−â

[
1

λ
−
λ

2
+O
(
λ3
)]

+ b̂

[
1−
λ2

6
+O
(
λ4
)]
.

(C.14)

Keeping the lowest orders of λ only, the best approxima-
tive solution to these equations is given by â= 0, ĉ= b̂= 1.
Therefore, the (regular) normalized eigenfunctions near
the horizon and asymptotically should behave like

ϕλ(y)∝

√
2

π
·

{
e−λ

2y, y→ 0 ,
cos(λy), y→∞ .

(C.15)

C.2 Regularity

In IfE of (19) the behavior of the eigenfunctions (C.15)

and of F ( λ2

4M2m2
) especially at small valus of λ seems to be

sufficiently nice, so that the limitm2→ 0 can be performed
and the divergence∝ lnm2 can be isolated:

IfE
m→0
→
8M2

�

∫ ∞
0

dλ ln

(
λ2

4M2m2

)
ϕλ(y)

×

∫ ∞
0

ϕλ(y
′) ·E(y′)dy′ . (C.16)

A necessary condition for that is the regularity of14

Iregf E ∝

∫ ∞
0

dλ lnλ ϕλ(y)

∫ ∞
0

ϕλ(y
′) ·E(y′)dy′ . (C.17)

The integral over y′ can be split into the domains of the
approximative solutions (C.15):

Eλ :=

∫ ∞
0

ϕλ(y
′) ·E(y′)dy′

≈

∫ 1
0

e−λ
2y′E(y′)dy′+

∫ ∞
1

cos(λy′)E(y′)dy′ .

(C.18)

In SRG, where E = 2M
r3
∝ 1
(y+1)3

, we can approximate

these integrals by the functions

∫ 1
0

e−λ
2y′

(y′+1)3
dy′ ≈

1

λ2+ 83
, (C.19)

∫ ∞
1

cos(λy′)

(y′+1)3
dy′ ≈

(
2e−λ−1

) sin(λ)
8λ

, (C.20)

which correctly reproduce the behavior of the integrals for
small and large values of λ. For intermediate values the de-
viations are also small as we have checked graphically. The
function

Eλ ≈
1

λ2+ 83
+
(
2e−λ−1

) sin(λ)
8λ

(C.21)

is regular for all values of λ, taking the value 1/2 at λ =
0 and behaving like sinλ/λ at infinity. Inserting (C.21)
into (C.17) the behavior of Iregf E at either the horizon
(y→ 0) or asymptotically (y→∞) can be investigated.
At the horizon only the part sin(λ)/λ of Eλ may cause

problems in (C.17) for λ→∞. However,
∫∞
0
dλ(ln λ sinλ)/

λ is finite, thus establishing regularity of (C.17) for y→ 0.
To show the asymptotic behavior of Iregf E is more te-

dious. First we consider the integral
∫∞
0
lnλ cos(λy)/(λ2+

8/3)dλ from (C.19) in (C.17) in the limit y→∞. We split
it at the point λ= 1. The first contribution is

∫ 1
0

lnλ cos(λy)

λ2+ 83
dλ=

1

y

∫ y
0

ln
(
s
y

)
cos s

s
y
2+ 83

ds

<
3

8y

∫ y
0

ln

(
s

y

)
cos sds

=
3

8y

[
ln

(
s

y

)
sin s

∣∣∣∣
y

0

−

∫ y
0

sin s

s
ds

]

=
3π

16 y
+O(y−2) , (C.22)

where a substitution s= λy has been performed. The sec-
ond contribution by

14 For the moment we neglect the action of �−1 in If . Pulling
it into the λ-integral would produce the typical IR problem of
the two-dimensional Green function whose resolution shall not
be discussed here (cf. the last paragraph of this appendix).
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∣∣∣∣
∫ ∞
1

lnλ cos(λy)

λ2+ 83
dλ

∣∣∣∣= 1y
∣∣∣∣
{
lnλ sin(λy)

λ2+ 83

∣∣∣∣
∞

1

−

∫ ∞
1

sin(λy)

×

[
1

λ
(
λ2+ 83

) − 2λ lnλ(
λ2+ 83

)2
]
dλ

} ∣∣∣∣

<
1

y

{∣∣∣∣
∫ ∞
1

1

λ
(
λ2+ 83

)dλ
∣∣∣∣

+

∣∣∣∣
∫ 1
0

2λ lnλ(
λ2+ 83

)2dλ
∣∣∣∣
}

=
3 ln(11/3)

8 y
(C.23)

is also at most of order y−1. Next we consider the in-
tegral

∫∞
0 lnλ cos(λy)

(
2e−λ−1

)
sin(λ)/(8λ)dλ. To obtain

an upper bound it is sufficient to set
(
2e−λ−1

)
→ 1:

∫ ∞
0

lnλ cos(λy) sin λ

λ
=

1

2

∫ ∞
0

lnλ {sin[λ(y+1)]− sin[λ(y−1)]}

λ
dλ=

1

2

∫ ∞
0

{
ln
(
s
y+1

)
sin s− ln

(
s
y−1

)
sin s
}

s
ds=

1

2
ln

(
y−1

y+1

)∫ ∞
0

sin s

s
ds
y→∞
→ 0−

π

2 y
+O(y−2) .

(C.24)

From the first to the second line we have performed a sub-
stution s= λ(y±1), respectively.
The present analysis can only be seen as some basic ar-

gument for the regularity of ln�E. In the effective action
one has to deal with termsE�−1 ln�E, where the�−1 can
be made acting to the left. In the case of expectation values
resulting from variations for E, however, one is forced to
evaluate IfE as it stands. In this case an explicit analysis
of the exact Green function (in terms of some expansion)
seems inevitable.
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